Attack on Broadcast RC4
Revisited

S. Maitra1 \hspace{1cm} G. Paul2 \hspace{1cm} S. Sen Gupta1

1Indian Statistical Institute, Kolkata

2Jadavpur University, Kolkata

FSE 2011, Lyngby, Denmark 15 February 2011
Outline of the Talk

Introduction
 Basics of RC4 Stream Cipher
 Motivation and Contribution

Our Result: Bias of Output Bytes
 Computing the Bias
 Exploiting the Bias
 Attack on RC4 Broadcast Scheme

Study: Non-Randomness of j
 Non-randomness in Different Rounds

Conclusion
 Summary of the Paper
RC4 Stream Cipher

- Designed by Ron Rivest in 1987

Data Structure
- S-array of size $N = 256$ bytes
- Key k of size 5 to 16 bytes
- Final key K of $N = 256$ bytes
- Two indices i and j
- Output: Stream of bytes

RC4 Stream Cipher

Key Scheduling Algorithm (KSA)

\[j = j + S[i] + K[i] \]

\[
\begin{array}{ccccccc}
0 & 1 & 2 & \cdots & i & j & 254 & 255 \\
\end{array}
\]
RC4 Stream Cipher

Key Scheduling Algo (KSA)

\[j = j + S[i] + K[i] \]

\[
\begin{array}{cccccc}
0 & 1 & 2 & \cdots & i & j \\
\hline \\
\square & \square & \square & \cdots & \square & \square \\
\end{array}
\]

\[
\begin{array}{cccccc}
254 & 255 & \cdots & \square & \square \\
\hline \\
\end{array}
\]

Pseudo-Random Gen. Algo (PRGA)

\[j = j + S[i] \]

\[
\begin{array}{cccccc}
0 & 1 & 2 & S[i] + S[j] & \cdots & i & j \\
\hline \\
\square & \square & \square & \square & \cdots & \square & \square \\
\end{array}
\]

\[
\begin{array}{cccccc}
254 & 255 & \cdots & \square & \square \\
\hline \\
\end{array}
\]
Cryptanalysis of RC4

More than 20 years of cryptanalytic results

- Finney Cycle [1994]
- Key-Output Correlation [Roos, 1995] [Paul & Maitra, 2007, 2008]
- Key-Permutation Correlation [Roos, 1995] [Paul & Maitra, 2007]
- Non-Randomness of Permutation [Mantin, 2001]
- Fault Attacks [Hoch & Shamir, 2004] [Mantin, 2005] [Biham et al, 2005]
- Non-random event: Glimpse Bias [Jenkins, 1996]
Cryptanalysis of RC4

More than 20 years of cryptanalytic results

- Finney Cycle [1994]
- Key-Output Correlation [Roos, 1995] [Paul & Maitra, 2007, 2008]
- Key-Permutation Correlation [Roos, 1995] [Paul & Maitra, 2007]
- Non-Randomness of Permutation [Mantin, 2001]
- Fault Attacks [Hoch & Shamir, 2004] [Mantin, 2005] [Biham et al, 2005]
- Non-random event: Glimpse Bias [Jenkins, 1996]
- Distinguishing Attacks
Distinguishing Attacks

Goal: Find an event which occurs with different probability in RC4 than in case of a perfectly random random source.

Existing Distinguishers

- Digraph Repetition Bias (Occurrence of $ABTAB$) [Mantin, 2001]
- Biased Second Output Byte ($z_2 = 0$) [Mantin & Shamir, 2001]
- A set of new linear biases of RC4 [Sepehrdad et al, 2010]
- ... a few more in this work
Motivation for this Work

FSE 2001. *A Practical Attack on Broadcast RC4.*

Main Claim: \(\Pr(z_2 = 0) \approx \frac{2}{N} \) (bias of second byte)
Motivation for this Work

FSE 2001. *A Practical Attack on Broadcast RC4.*

Main Claim: \(\Pr(z_2 = 0) \approx \frac{2}{N} \) (bias of second byte)

Two related claims

1. \(\Pr(z_r = 0) \approx \frac{1}{N} \) at PRGA rounds \(3 \leq r \leq 255 \).

2. \(\Pr(z_r = 0 \mid j_r = 0) > \frac{1}{N} \) and \(\Pr(z_r = 0 \mid j_r \neq 0) < \frac{1}{N} \) for \(3 \leq r \leq 255 \). These two biases, when combined, cancel each other to give no bias at \(z_r = 0 \) for rounds 3 to 255.
Contribution of this Work

1. $\Pr(z_r = 0) \approx \frac{1}{N}$ at PRGA rounds $3 \leq r \leq 255$.

 $\Pr(z_r = 0) \not\approx \frac{1}{N}$ for $3 \leq r \leq 255$

 Additional results exploiting the above bias
Contribution of this Work

1. \(\Pr(z_r = 0) \approx \frac{1}{N} \) at PRGA rounds 3 \(\leq r \leq 255 \).

 \[\Pr(z_r = 0) \not\approx \frac{1}{N} \text{ for } 3 \leq r \leq 255 \]

 Additional results exploiting the above bias

2. \(\Pr(z_r = 0 \mid j_r = 0) > \frac{1}{N} \) and \(\Pr(z_r = 0 \mid j_r \neq 0) < \frac{1}{N} \) for 3 \(\leq r \leq 255 \). These two biases, when combined, cancel each other to give no bias at \(z_r = 0 \) for rounds 3 to 255.

 Further investigation of the events
 Careful analysis of non-randomness of \(j \)
Our Result

Bias of Output Bytes
Our Result

Output bytes 3 to 255 are also biased to Zero

Theorem
For $3 \leq r \leq 255$, the probability that the r-th RC4 keystream byte is equal to 0 is

$$\Pr(z_r = 0) \approx \frac{1}{N} + \frac{c_r}{N^2}.$$

where c_r is given by

$$\left[\left(\frac{N-1}{N} \right)^r + \left(\frac{N-1}{N} \right)^{N-r-1} - \left(\frac{N-1}{N} \right)^{N-1} \right] \cdot \left[\left(\frac{N-1}{N} \right)^{r-2} - \frac{1}{N-1} \right].$$
Proposition (Jenkins’ Correlation)

After the r-th ($r \geq 1$) round of the PRGA,

$$\Pr(S_r[j_r] = i_r - z_r) = \Pr(S_r[i_r] = j_r - z_r) \approx \frac{2}{N}.$$

Corollary

After the r-th ($r \geq 1$) round of the PRGA, $\Pr(z_r = r - S_{r-1}[r]) \approx \frac{2}{N}$.
Motivation for Proof (our result)

Proposition (Jenkins’ Correlation)

After the r-th ($r \geq 1$) round of the PRGA,

$$\Pr(S_r[j_r] = i_r - z_r) = \Pr(S_r[i_r] = j_r - z_r) \approx \frac{2}{N}.$$

Corollary

After the r-th ($r \geq 1$) round of the PRGA, \(\Pr(z_r = r - S_{r-1}[r]) \approx \frac{2}{N}. \)

How about $\Pr(S_{r-1}[r] = r)$?
Mantin’s Observation

At the end of KSA, for $0 \leq u \leq N - 1$, $0 \leq v \leq N - 1$,

$$
\Pr(S_0[u] = v) = \frac{1}{N} \left[\left(\frac{N-1}{N} \right)^v + \left(1 - \left(\frac{N-1}{N} \right)^v \right) \left(\frac{N-1}{N} \right)^{N-u-1} \right] \quad v \leq u
$$

$$
\Pr(S_0[u] = v) = \frac{1}{N} \left[\left(\frac{N-1}{N} \right)^{N-u-1} + \left(\frac{N-1}{N} \right)^v \right] \quad v > u
$$
Mantin’s Observation

At the end of KSA, for \(0 \leq u \leq N - 1\), \(0 \leq v \leq N - 1\),

\[
\Pr(S_0[u] = v) = \frac{1}{N} \left[\left(\frac{N-1}{N} \right)^v + \left(1 - \left(\frac{N-1}{N} \right)^v \right) \left(\frac{N-1}{N} \right)^{N-u-1} \right] \quad \text{if } v \leq u
\]

\[
\Pr(S_0[u] = v) = \frac{1}{N} \left[\left(\frac{N-1}{N} \right)^{N-u-1} + \left(\frac{N-1}{N} \right)^v \right] \quad \text{if } v > u
\]

Does this propagate to PRGA?
Sketch of Proof (our result)

- Mantin’s Observation: Bias for $S_0[r] = r$

- $S_{r-1}[r] = r$ may happen in two ways:
 1. $S_0[r] = r$ and i, j never touches this cell
 2. $S_0[r] \neq r$ but $S_{r-1}[r] = r$ occurs at random
Our Result: Bias of Output Bytes

Sketch of Proof (our result)

- Mantin’s Observation: Bias for $S_0[r] = r$

- $S_{r-1}[r] = r$ may happen in two ways:
 1. $S_0[r] = r$ and i, j never touches this cell
 2. $S_0[r] \neq r$ but $S_{r-1}[r] = r$ occurs at random

Lemma

For $r \geq 3$, the probability that $S_{r-1}[r] = r$ is

$$
\Pr(S_{r-1}[r] = r) \approx \Pr(S_0[r] = r) \cdot \left[\left(\frac{N-1}{N} \right)^{r-1} - \frac{1}{N} \right] + \frac{1}{N}.
$$
Sketch of the Proof (our result)

$z_r = 0$ can be branched as follows:

- $S_{r-1}[r] = r$ (lemma) and $z_r = r - S_{r-1}[r]$ (Jenkin)
- $S_{r-1}[r] \neq r$ (lemma) and $z_r = 0$ (random)
Sketch of the Proof (our result)

$z_r = 0$ can be branched as follows:

- $S_{r-1}[r] = r$ (*lemma*) and $z_r = r - S_{r-1}[r]$ (*Jenkin*)
- $S_{r-1}[r] \neq r$ (*lemma*) and $z_r = 0$ (*random*)

Hence the result: $\Pr(z_r = 0) \approx \frac{1}{N} + \frac{c_r}{N^2}$

with $c_r = \left[\left(\frac{N-1}{N} \right)^r + \left(\frac{N-1}{N} \right)^{N-r-1} - \left(\frac{N-1}{N} \right)^{N-1} \right] \left[\left(\frac{N-1}{N} \right)^{r-2} - \frac{1}{N-1} \right]$.

Our Result: Bias of Output Bytes

Numerical Bound on c_r

\[
\max_{3 \leq r \leq 255} c_r = c_3 = 0.98490994 \quad \text{and} \quad \min_{3 \leq r \leq 255} c_r = c_{255} = 0.36757467
\]

\[
\frac{1}{N} + \frac{0.98490994}{N^2} \geq \Pr(z_r = 0) \geq \frac{1}{N} + \frac{0.36757467}{N^2}
\]
Our Result: Bias of Output Bytes

Experimental Verification

- Number of trials = 1 Billion
- Key size = 16 Bytes

[Note: Sepehrdad et al (2010) do not cover these biases]
Applications

Of the Biases Discovered
Appl. 1: A Class of New Distinguishers

E occurs in X with probability p and in Y with probability $p(1 + \epsilon)$ implies a possible distinguisher with $O(p^{-1}\epsilon^{-2})$ required samples.

In case of our E: $z_r = 0$ for $3 \leq r \leq 255$,

- Random source: $p = \frac{1}{N}$
- RC4 Keystream: $p(1 + \epsilon) = \frac{1}{N} \left(1 + \frac{c_r}{N}\right)$
Appl. 1: A Class of New Distinguishers

E occurs in X with probability p and in Y with probability $p(1 + \epsilon)$ implies a possible distinguisher with $O(p^{-1}\epsilon^{-2})$ required samples.

In case of our E: $z_r = 0$ for $3 \leq r \leq 255$,

- Random source: $p = \frac{1}{N}$
- RC4 Keystream: $p(1 + \epsilon) = \frac{1}{N} \left(1 + \frac{c_r}{N}\right)$

We get 253 new distinguishers, each requiring $O(N^3)$ samples!

[Note: Mantin & Shamir (2001) distinguisher is much stronger]
Appl. 2: Guessing State Information

Idea: Guess $S_{r-1}[r] = r$ using output information $z_r = 0$

$$
\Pr(S_{r-1}[r] = r \mid z_r = 0) = \frac{\Pr(S_{r-1}[r]=r)}{\Pr(z_r=0)} \cdot \Pr(z_r = 0 \mid S_{r-1}[r] = r)
$$

$$
\approx 2 \cdot \left(\frac{1}{N} + \frac{c_r}{N} - \frac{c_r}{N^2} \right) \cdot \left(1 + \frac{c_r}{N}\right)^{-1} \geq \frac{2}{N}
$$
Appl. 3: Attack on RC4 Broadcast Scheme

Situation: Message M is broadcast to k parties (random keys)

Attack: Reliably extract byte(s) of M from the k ciphertexts
Appl. 3: Attack on RC4 Broadcast Scheme

Situation: Message M is broadcast to k parties (random keys)

Attack: Reliably extract byte(s) of M from the k ciphertexts

Mantin & Shamir (FSE 2001): Extract 2nd byte of M given $k = \Omega(N)$

We can extract bytes 3 to 255 of M given $k = \Omega(N^3)$

Idea: r-th byte of M gets XOR-ed with z_r, which is 0 most often.
Study

NON-RANDOMNESS OF j
Non-Randomness of j_1

Note that $j_1 = j_0 + S_0[i_1] = 0 + S_0[1] = S_0[1]$, where S_0 is the state array right after KSA is over.

$$
\Pr(j_1 = v) = \Pr(S_0[1] = v) = \begin{cases}
\frac{1}{N}, & v = 0 \\
\frac{1}{N} \left(\frac{N-1}{N} + \frac{1}{N} \left(\frac{N-1}{N} \right)^{N-2} \right), & v = 1 \\
\frac{1}{N} \left(\left(\frac{N-1}{N} \right)^{N-2} + \left(\frac{N-1}{N} \right)^v \right), & v > 1
\end{cases}
$$

Clearly not random!
Non-Randomness of j_1

Note that $j_1 = j_0 + S_0[i_1] = 0 + S_0[1] = S_0[1]$, where S_0 is the state array right after KSA is over.

$$\Pr(j_1 = \nu) = \Pr(S_0[1] = \nu) = \begin{cases}
\frac{1}{N}, & \nu = 0 \\
\frac{1}{N} \left(\frac{N-1}{N} + \frac{1}{N} \left(\frac{N-1}{N} \right)^{N-2} \right), & \nu = 1 \\
\frac{1}{N} \left(\left(\frac{N-1}{N} \right)^{N-2} + \left(\frac{N-1}{N} \right)^{\nu} \right), & \nu > 1
\end{cases}$$

Clearly not random!
Non-Randomness of j_2

Note that $j_2 = j_1 + S_1[i_2] = S_0[1] + S_1[2]$

$$\Pr(j_2 = \nu) = \sum_{w=0}^{N-1} \Pr(S_0[1] = w) \cdot \Pr((S_1[2] = \nu - w) \mid (S_0[1] = w))$$

Case I. $S_0[1] = 2 \Rightarrow S_1[2] = 2$.

$$\Pr((S_1[2] = \nu - 2) \mid (S_0[1] = 2)) = \begin{cases} 1 & \text{if } \nu = 4, \\ 0 & \text{otherwise.} \end{cases}$$

Case II. $S_0[1] \neq 2 \Rightarrow S_1[2] = S_0[2]$.

$$\Pr((S_1[2] = \nu - w) \mid (S_0[1] \neq 2)) = \Pr(S_0[2] = \nu - w).$$
Non-Randomness of j_2

Study: Non-Randomness of j_n
Non-Randomness of j_2

Appl: Combine Jenkin’s bias $\Pr(S_r[i_r] = j_r - z_r) = \frac{2}{N}$ to get

$$\Pr(S_2[i_2] = 4 - z_2) \approx \frac{1}{N} + \frac{4/3}{N^2}$$

[Note: Sepehrdad et al (2010) do not cover this bias]

[Note: j behaves almost random round 3 onwards]
Summary

This paper: Revisiting Mantin–Shamir paper from FSE 2001

1. Bias of Keystream bytes 3–255 towards Zero NEW
 - A new class of distinguishers for RC4
 - Attack on RC4 broadcast scheme along this line
 - Guessing related state information from keystream

2. Strong bias of j_2 towards 4 NEW
 - Guessing related state information from keystream
THANK YOU
FOR YOUR KIND ATTENTION