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About BLAKE

BLAKE is now one of the five finalists in SHA-3 competition
anounced by NIST.

One of the two (Addition-Rotation-Xor)ARX designs in the
final round

It is one of the fastest functions on various platforms in
software
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Hash function BLAKE-32

Initialization(
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

)
←
(

h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

)

Each round is composed of 8 applications of G function and

Compression function iterates a series of 10 rounds

Each round uses all 16 message words according to
permutation table described in the proposal of BLAKE

Finalization procedure is linear
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High probability differential trail
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High probability differential trails

We obtain a 2-round differential trail with probability 2−1

with active MSB

3-round differential trail with probability 2−s where s = 6, 7, 8

3.5-round differential trail with probability ≥ 2−32

2-round differential trail with probability 2−(3t−1) or 2−3tor
2−(3t+1) where t is number of active bits (excluding MSB)

3-round differential trail consistent with the counters t0, t1

which has probability 2−21

2-round differential trail with ith and (i + 16)th bit active
with probability 2−9(when ith bit is MSB) otherwise
probability is ≥ 2−14
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Boomerang attack on Compression Function
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Pr [∆→ ∆∗] = p

Pr [∇ → ∇∗] = q

f = f1 ◦ f0

f (P1)⊕ f (P3) = ∇∗

f (P2)⊕ f (P4) = ∇∗
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Boomerang distinguisher

Let F (H) = f (H)⊕ H where f = f1 ◦ f0.

For the boomerang quartet (P1,P2,P3,P4) we obtain:

P1 ⊕ P2 = ∆, (1)

P3 ⊕ P4 = ∆, (2)

[F (P1)⊕ P1]⊕ [F (P3)⊕ P3] = ∇∗, (3)

[F (P2)⊕ P2]⊕ [F (P4)⊕ P4] = ∇∗ (4)

For a random n-bit compression function finding such quartet
will have complexity 2n(with a fixed difference)

To get a boomerang distinguisher for compression function F
we need p2q2 > 2−n
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Zero-sum distinguisher

P4

f0

f1

∆∗

∇∗

∇

P1

P2

P3 ∆

From the last
equations we get:
F (P1)⊕ F (P2)⊕
F (P3)⊕F (P4) = 0

For a random
permutation
complexity is 2n/4.
But with fixed
difference the
complexity rises to
2n/2
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Boomerang attack on BLAKE-32

The real probability of the Boomerang is p̂2q̂2, where p̂, q̂ are
the amplified probability defined as:
p̂ =

√∑
∆∗ Pr [∆→ ∆∗]2 , q̂ =

√∑
∇ Pr [∇ → ∇∗]2

But getting these probabilities is hard in some cases. So we
run computer simulation

For the attack on Hash function, the returned pairs are
consistent if v12 ⊕ v13 and v14 ⊕ v15 are fixed. This increases
the complexity of the attack by a factor of 264
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Summary of our attack

CF/KP1 Rounds CF/KP calls

CF 4 267

CF 5 271.2

CF 6 2102

CF 6.5 2184

CF 7 2232

KP 4 23

KP 5 27.2

KP 6 211.75

KP 7 2122

KP 8 2242

1CF = Compression Function, KP = Keyed Permutation
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Conclusion

Application of the concept of boomerang distinguisher to
compression function

Shown such distinguisher for CF of BLAKE-32

Classical boomerang distinguisher for KP of BLAKE-32

Attack works for 2/3 of the total number of rounds of the CF
and 4/5 of the total number of rounds of the KP

The attack can be equally applied to other versions of BLAKE

BLAKE-32 has been tweaked to 15 rounds in the final round
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THANK YOU!
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